
Theory of semi-dilute polymer solutions. I. Static property in a good solvent

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 4155

(http://iopscience.iop.org/0305-4470/16/17/030)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 4155-4170. Printed in Great Britain 

Theory of semi-dilute polymer solutions: I. Static property 
in a good solvent 
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t Department of Physics, Kyushu University, Fukouka 812, Japan 
$ Department of General Education, Osaka Institute of Technology, Osaka 535, Japan 

Received 4 May 1983 

Abstract. We study the static property of semi-dilute polymer solutions in a good solvent. 
Edwards' transformation is employed to develop the conformation space renormalisation 
group theory in semi-dilute solutions. We are primarily concerned with the crossover 
behaviour from a dilute to semi-dilute regime. The first-order calculation on E = 
(4- d )  with d the dimensionality of space is performed for the asymptotic scaling functions 
of the radius of gyration, osmotic compressiblity and the correlation length of the monomer 
density fluctuations. 

1. Introduction 

The current understanding of semi-dilute polymer solutions in a good solvent is mainly 
based on the scaling theory (de Gennes 1979). In a dilute limit the radius of gyration 
RGD is the characteristic length of the problem. RGD depends on the polymerisation 
index N for large values of N as 

RGD-N" (1.1) 

which defines the exponent v. If one increases the monomer concentration C the 
polymer chains begin to overlap each other at the concentration 

c*= N/RgD, (1.2) 

where d is the spatial dimension of the system. The scaling theory assumes for 
sufficiently large values of N that a thermodynamic quantity X behaves as 

(1.3) 

with an exponent y. The asymptotic behaviour of F ( C / C * )  for 1 /C*  >> C/C* >> 1, 
which is the definition of the semi-dilute limit, can be determined if one specifies the 
N dependence of X. The results thus obtained have shown good agreement with 
experiments (Daoud et a1 1975, Chu and Nose 1980, Amirzadeh and McDonnell 
1982). Despite these successful predictions one cannot help getting an impression that 
the theory is still rather limited. In order to confirm the scaling law (1.3) one needs 
to obtain the full concentration dependence of F(C/C*) .  So far few works have been 
available in this direction. Quite recently the scaling function of the osmotic pressure 
has been calculated by a renormalisation group method (Knoll et a1 1981, Ohta and 

X = NYF( C /  C*) 
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Oona 1982). On the other hand Noda et al (1981) have performed a precise light 
scattering measurement of the osmotic pressure. If one allows one parameter to be 
adjusted, the theory by Ohta and Oono shows good agreement with experimental 
observation in a wide range of concentration. See also the analysis by Schafer (1982). 

In this paper we would like to extend our theory to cover other quantities. The 
correlation length of the monomer density fluctuations is of particular interest. Since 
the light scattering technique provides us with information about the osmotic pressure 
and the correlation length simultaneously, one can compare the theory with experi- 
mental observation without any adjustable parameters. If such an analysis could be 
made, it would be a quantitative test of the scaling law (1.3). 

Here we study the concentration dependence of the correlation length of the 
monomer density fluctuations in a good solvent. For simplicity we restrict ourselves 
to a monodisperse case. By means of the conformation space renormalisation group 
theory (Oono 1979, Oono et a1 1981) the scaling form of the correlation length is 
obtained up to first order of E = (4- d ) .  In the course of the calculation the radius of 
gyration of a test chain is also evaluated. 

The conformation space renormalisation method was first introduced in the study 
of a single chain where the model is written in terms of chain conformation. Such a 
direct application of a renormalisation theory is possible in the dilute limit but difficult 
technically to cover the semi-dilute regime. A similar attempt has been made by des 
Cloizeaux (1981). However, the results obtained have been limited to a dilute regime. 
As was shown in a previous paper (Ohta and Oono 1982), Edwards’ (1966) transforma- 
tion of the model is most suitable to study semi-dilute solutions by the conformation 
space renormalisation method. Edwards represents the model with a continuous scalar 
field variable. The feature of chain connectedness or the information of chain conforma- 
tion then enters in the vertex functions. Thus this representation is capable of using 
the renormalisation theory transparently. 

In § 2 we describe the Edwards approach in a manner appropriate to the present 
purpose. The scattering function of the full monomer density fluctuations is obtained 
formally in § 3 up to first order of the excluded volume parameter. The scattering 
function consists of two parts. One is due to the intrachain correlation while the other 
comes from the correlation between different chains. In § 4 we derive the radius of 
gyration and the correlation length by expanding the scattering function in powers of 
the wavenumber. Our remormalisation group procedure is presented in § 5 .  The E 

expansion of the radius of gyration and the correlation length is carried out in § 6. 
The final section is devoted to a summary and discussions. In the appendix we 
summarise the formulae used in the derivation of the correlation length. 

2. General formulation 

We consider the system of a semi-dilute solution with n polymer chains in a box V 
in d dimensions. The model which we start with is defined by the Hamiltonian 

where c i ( 7 )  represents the continuous chain conformation of the ith chain with the 
contour length 7, U( > O )  is the excluded volume parameter, a is the microscopic cut-off, 
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and N is the measure of the chain length. In this paper we restrict ourselves to the 
monodisperse case. Although the model (2.1) has an intuitively definite meaning it 
makes the actual calculation complicated. Thus a more convenient representation is 
necessary. One of the methods is to introduce a new Hamiltonian equivalent with 
(2.1) but written with a continuous field variable (Edwards 1966). First introduce the 
local monomer density 

where 

pq = c JON d7 exp[-iqci(T)l, 

5, = J dd". 
The partition function may be written as 

where 

4(ci(T)) J 4 k  exp~ik  * ci(7)1* 
k 

Performing the integral over { p }  one obtains 

where 

The bracket ( . . . ),, means the canonical average with 

(2.9) 

respect to the Hamiltonian (2.1) 
with U = 0. The subscript i of ci( T )  has been omitted in (2.9) since this representation 
factorises out each chain. Thus one obtains the new Hamiltonian 

2 { 4 1 = ( 2 ~ ) - '  J 4k4-k-ln G{4}, (2.10) 
k 

where an additive constant has been ignored. 
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The correlation function of the monomer density fluctuations can also be written 
with the 4 field: 

S ( q )  = [ d{c} pqpp-q e-H'''/Z = u - l  - u-2(4q4-q),  (2.11) 

where ( . . . ) indicates the average with respect to (2.10). 
So far our treatment is general and exact. In order to obtain the explicit form of 

G{C#J} one has to employ an approximation. Here we expand G{C#J} in powers of 4: 

Note the formula that 

(2.12) 

(2.13) 

where 

X (  TI, T,) = ( Ca ( Tl) C u  ( T I ) ) 0  = N{i(  N-'( 7, + 7,) - +a( N-' 17, - TI I - 1)' -&}. 
(2.14) 

By neglecting the wall effect the system must have translational invariance in space. 
Furthermore one may put 4,, = 0 without loss of generality. With these in mind (2.12) 
is evaluated up to fourth order of C#J as 

In G{+)=-c 5 4 k 1 4 k 2 r ( z ) ( k 1 9  kZ)+ic 1 4 k 1 4 k z C # J k 3 r ( 3 ) ( k l ,  k2, k3) 
XI J 2  k iVk2.k3 

where 

= (277)d8(k1 + . . . k n ) P ( k l , .  . . , k , - 1 )  (2.16) 

and c = n/ V is the polymer number density. 
Substitution of (2.15) into (2.10) gives us the final form of %'{4}. It can be shown 

by a dimensional argument that the approximation used in the derivation of (2.15) is 
actually the expansion in terms of u N ~ - ~ ' ~  with cuN2 fixed. Hence one can develop 
the loop expansion for X{4} just as in the theory of phase transitions (e.g. Brtzin et 
a1 1976). In fact the calculation of the scattering function described in 0 3 is correct 
up to one-loop order. 

The above fact on the expansion parameter indicates that in the scaling limit 
N / a  >> 1 the naive expansion (2.12) breaks down below four dimensions. The renor- 
malisation method is thus indispensable to make the approximation controllable and 
to obtain reliable scaling results, which will be discussed in P 5 .  



Semi-dilute polymer solutions: I 4159 

3. Scattering function 

Before applying the renormalisation procedure we wish to derive the formal expression 
of the correlation function S ( 4 )  up to first order of uN2“”. The correlation (C&~#L~) 
is calculated by the Hamiltonian (2.10) with (2.15): 

( 3 . l ) t  

It should be noted that the vertex function fin) defined by (2.16) is the n-point 
monomer density correlation of a single Gaussian chain. For instance I-(”( k) is given 
from (2.13) and (2.16) by 

f(’)( k) = N2{2/ k2N - (2/k2N)’[1 -exp(-k2N/2)]}. (3.2) 

This is the scattering function of a Gaussian chain. Calculation of other vertex functions 
is more involved. Those precise forms are, however, not necessary for the present 
purpose (see appendix). 

The zeroth-order correlation ( 494-9)0 is obtained by 

(494-9)o = U / ( I  + 2cuf(*)(q)).  (3.3) 

The correction (+q4-q)l from the 
leading order by 

term of (3.1) is shown to be given up to the 

( 4 9 4 - 9 ) 1 =  - 18c2(494-9>: J (4p,d-p>o(4q+p9-q-p)of‘~’(q, p ) f ( 3 ) ( - q ,  (3.4) 
P 

where we have used the fact that &= 0. The last two terms of (3.1) produce another 
correction ( c # J ~ ~ - ~ ) ~  given by 

(3.5) 
A 

where I-(40(q, p) consists of six terms which arise from the factorisation of 
4 - k l  ‘ P k 2 - k , 4 k 3 4 k l - k 2 :  

f(4)(4, p )  = P4’(p, 0 , q )  +f(4)(p, p + q , q )  + f(4Yp, p+q,  p )  

+ f(4Yq, p + q, q )  + f(4)(q, p + q, pi + f(4’(q, 0, P). (3.6) 

Now let us consider the meaning of the *corrections (3.4) and (3.5). Note that the 
factor cP3)  appears twice in (3.4). Since is the three-point correlation of a single 
Gaussian chain this indicates that (3.4) gives the interchain correlation of the scattering 
function. On the other hand (3.5) with cP4)  gives rise to the intrachain correlation. 

t The wavenumber dependence of the third term of (3.1) has been chosen to be consistent with f(4)( k,, k,, k,) 
given by (A7). 
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If one tentatively ignores (3.4) the formula (2.11) gives the scattering function as 
follows: 

S ( q )  = cG(q)/(l+ cuG(q)) (3.7) 

with 

G(q) =2f‘”(q)-2u (P‘4’ (q ,p) -~‘z’ (q)~‘2’ (p) ) (1  + 2 c ~ f ( ~ ’ ( p ) ) - ’ .  (3.8) 

The function G(q) is the scattering function of a test chain in the semi-dilute solution. 
Equation (3.7) was first derived by Edwards (1966). The scaling form of G(q) has 
been obtained recently with including the polydispersity effect (Oono, private communi- 
cation). If one takes the dilute limit c+O, S ( q ) / c  reduces to the scattering function 
of a single chain studied previously (Ohta er a1 1082). 

The proper scattering function up to O ( u )  must incorporate the correction (3.4): 

I, 

S ( q )  = cG(q) / ( l+  cuG(q))+ csdq), (3.9) 

where 

cu r y q ,  p)f(3’(-q, - p )  S,(q) = 18u 
(1 +2cuf(2’(q))2 Ip (1  +2cuP’(p)) ( l  +2cuPZ’(q+p))’ 

(3.10) 

One may write (3.9) in another form 

with 

f(3)(q, p ) f 3 ’ ( - q ,  - p )  
J(q)=G(q)+18cu2 (3.12) 

which is equivalent to (3.9) up to O( U). The scattering function in the limit q + 0 must 
be related to the osmotic compressibility. This is verified in the following. The osmotic 
pressure n = a In Z / a  V is calculated from (3.1) and is given up to first order of U by 
( k g T = l )  

(3.13) 

where the first term appears from the additive constant neglected in (2.10). On the 
other hand note the facts obtained from (2.16) that 

lim f(3’(q, p )  = p ) .  
q+o 

Furthermore one can show that (see appendix) 

lim (P‘4’(q, p )  - f ( z ’ ( q ) ~ ’ ( p ) )  = 0. 
q+o 

Therefore (3.11) becomes 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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It is readily shown from (3.13) that the RHS of (3.17) is an/& up to O(u).  Note that 
the last term of (3.17) comes from S , ( 4 ) .  Thus the interchain correlation is important 
to satisfy the thermodynamic relation consistently up to O( U). 

4. Radius of gyration and correlation length 

In a semi-dilute polymer solution there are three types of characteristic lengths. One 
is the root mean square end-to-end distance of a test chain, which has been studied 
in a previous paper (Ohta and Oono 1982). The radius of gyration RG also characterises 
the form of a test chain. These two quantities are accessible by a neutron scattering 
experiment. The third characteristic length is the correlation length 6 of monomer 
density fluctuations. In a dilute regime the correlation length 6 is the same as RG. 
However, if one increases the polymer concentration, the chains overlap each other. 
The average contact length specifies the correlation length. Thus one may expect that 
the correlation length 6 is generally shorter than the radius of gyration RG in semi-dilute 
solutions. 

First we wish to derive the expression of RG up to O(u) .  The radius of gyration 
RG is defined with the correlation function G(q) of a test chain by 

G(q)/G(O) = 1 -(42/d)RZG +0(q4). (4.1) 

One may expand G(q) given by (3.8) in powers of q :  

G(4) = N 2 - 3 N z Q z - f ~ N 4 ( 2 / N ) d ’ Z  ( 2 P  Q)’V(P)( 1  CUP'( p) ) - ’+  O( a‘)), I, (4.2) 
where 

Q = q(N/2)1’2,  P = p( N /  2) 1’2, (4.3) 
and V(P) is defined by 

$(4)( q, p )  - f(2’(q)f‘z’(p) = AN4( 2 Q  P)’ V(P)  + O( Q4). (4.4) 

The explicit form of V(P) is given by (A9) in the appendix. Comparing (4.2) with 
(4.1), some manipulations yield 

where RGD is the radius of gyration in the dilute limit: 

RkD = & d N  l + ~ N ~ ( 2 / N ) ~ ’ ~ ( 4 / d )  P2V(P)  . (4.6) 

The calculation of the correlation length 6 can be performed in a similar way. The 
( I, ) 

definition of 6 is given through the relation 

S ( 4 ) / S ( O )  = 1 - ( 4 V  d ) t 2  + 0(q4). (4.7) 
In order to obtain 6 up to O ( u )  one may use S ( 4 )  derived in (3.11) with (3.12). Let 
us expand J ( q )  in terms of 4 :  

(4.8) J ( 4 )  = N2 - (4 ’N2/d )R& + N2J1 - (N242/d)J,+ O(q4), 
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where the terms with J1 and J2 arise from the second term of (3.12). The formulae 
oi J1 and J2, which are of order U, are given in (A14) and (A15) respectively in the 
appendix. The scattering function S ( q )  may be written up to O(qz) as 

Thus the correlation length 6 is given by 

t 2 / R ? j D  = ( $ ) - ' ( R ? j / R & ,  + 6J2/dN - 2J1), (4.10) 

where we have used the fact that J1 - J 2 - 0 ( u ) .  
The concentration dependence of the mean square end-to-end distance [ R 2 ]  has 

been studied previously (Ohta and Oono 1982). Here we present the result up to 
O( U )  without derivation: 

2u  
d P 

[ R 2 ] / [ R 2 ] D =  1 - - N2 

where 
r 

[ R 2 ] , =  ~ N + ~ u N ~ ( ~ / N ) ~ / '  J P 2 U ( P ) ,  
P 

(4.11) 

(4.12) 

(4.13) 

5. The renormalisation group analysis 

The expressions of RG and 6 obtained in 0 4 are correct up to order UN'~-"'~. In the 
asymptotic scaling limit where u N ( ~ - ~ ' "  >> 1, however, the expansion breaks down 
below four dimensions. In order to overcome this difficulty we here employ the 
renormalisation group method together with the 4 - d( = E )  expansion. The scaling 
functions for RG and 6 will be calculated up to O ( E ) .  

The results (4.5), (4.6) and (4.10) obtained by naive perturbation contain key 
information for renormalisation. Since we are concerned with the order E corrections 
the integral over P may be performed in four dimensions. For sufficiently large values 
of P with cuNZ fixed one can show that 

P2)( p )  = N 2 / P 2 ,  V ( P )  2 1 / P .  (5.1) 

Therefore the integral in (4.6) diverges logarithmically whereas the RHS of (4.5) does 
not exhibit divergence as long as cuN2 is finite. The osomotic compressibility in (4.10) 
contains a divergent integral, which is easily seen from (3.17). As is shown in the 
appendix the factors J1 and J2 also diverge logarithmically. However, these divergences 
are found to cancel each other in the combination 6J2lNd-2Jl. This must be the 
case, otherwise the exponent associated with 6 depends on the polymer concentration. 
Thus the divergent integrals appear only in RGD and an/& In fact the divergent parts 
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of these quantities are given for d = 4 by 

(5.2) 

where the integrands have been approximated by the asymptotic form for P>> 1. 
Therefore an infrared cut-off should be understood. On the other hand the ultraviolet 
cut-off is given by (N/2a)'12 with a defined in (2.1). Here we do not use the 
dimensional regularisation since the present approach is simpler, at least for the 
calculations up to O( E ) .  

In order to eliminate the logarithmic anomaly we introduce the renormalisation 
factors Z, and Z,,; 

where NR is the renormalised polymerisation index and uR is the dimensionless 
renormalisation coupling constant. K is the reference short distance cut-off parameter. 
The renormalisation of c or ci( T )  is not necessary since any divergences can be shown 
to be absorbed into ZN and Z,,. The renormalisation group equation for the characteris- 
tic length A(N, c, U, a )  which stands for RG or 5 is constructed as follows. The 
renormalised length AR(NR, c, uR(u), K )  should be related to A(N, c, U, a )  as 

where we have used the relations (5.4) and (5.5). Impose the condition that A is 
independent of the arbitrary chosen reference cut-off K (N > K > a )  so that one obtains 

where use of (5.4) has been made. The Gell-Mann-Low function P ( u , )  is given by 

The renormalisation factors Z, and Z,, can be obtained by a perturbation expansion 
in terms of U,; 

z, = 1 + b l U R + O ( U i ) ,  z, = l+bzuR+O(ui). (5.9) 

The coefficients b, and b2 are determined in such a way that the ultraviolet divergences 
in (5.2) and (5.3) should be eliminated by ZN and Z,. Thus one obtains 

bl= (4r2)- '  ln(K/a), (5.10) 

b2-2bI =(2n2)- '  ln(K/a), (5.11) 

where the relation U = u , + O ( U ~ )  has been used. The function P (  uR) is then given 
up to O ( u i )  by 

(5.12) P (  U,) = u R ( l &  - T-'UR). 
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The condition p(  uR) = 0 yields the fixed point value U; 

U; = t . r r 2 E + O ( E 2 ) .  (5.13) 

which agrees with that obtained in the dilute limit (Oono et a1 1981, Ohta et a1 1982). 
At the fixed point uR = U: the renormalisation group equation (5.7) simplifies to 

(5.14) ( K a / a K  +NRBa/aNR)A,(NR, C, U;, K )  =o,  
where 

(5.15) 

Equation (5.14) and the dimensional analysis give the scaling form of AR 

AR(NR, c, U;, 1) = N;F(cN:, U;), (5.16) 

where 

~ ~ [ 2 ( 1 -  B)]-’ =+(1 + & E  +O(E ’ ) ) .  (5.17) 

In (5.16) we have put K = 1.  The exponent Y given by (5.17) agrees with the value 
obtained by various methods. The scaling function F ( x ,  U&) will be evaluated in § 6. 

6. Scaling form of the correlation length 

Although our final aim is to evaluate the universal scaling function of the correlation 
length 6 many kinds of other quantities can be obtained as a byproduct in the course 
of the calculation. Hereafter we omit the subscript R of N and U* which should be 
understood to be the renormalised variables. 

First we wish to derive the scaling form of the radius of gyration. In the dilute 
limit RgD is given from (4.6) up to O ( E )  by 

57 x5 
dx - + 

( N /  Zr ) 1’2 
2 

x 6  + 30 R GD = ’ { N + $ [ Jo dx x 5  ( V (  x )  - 
6 x 6 + 3 0  

where the last term is a convergent integral. Using (A9)  for V ( x )  and the fixed point 
value (5.13) one obtains RGD in the limit N /  K >> 1 

(6.2) 

where y is the Euler constant y =0.577. . . . Equation (6.2) does not agree with the 
previous result obtained by a slightly different method (Ohta er al 1982). This is not 
surprising because RGD itself is not a universal quantity. In fact one can verify that 
the ratio R&,/[R2]~, which is universal, does agree with that obtained in the above 
paper if one calculates [R2] ,  given by (4.12) in the same way as described here. 

R&D = k d N ( N / 2 ~ ) ~ ” ( 1  -SE + & Y E  + O ( E ‘ ) ) ,  

The scaling form of the radius of gyration is given from (4.5) by 

where 
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1 0  
0 9 -  

$ 0 7  
-0 
cs 

0 5 -  

In (6.3) the correction of order E has been exponentiated. Furthermore we have 
introduced a scaled variable X instead of cuN2. These are allowed in the spirit of the 
E expansion. The origin of the exponent ~ / 4  in (6.5) will be described below. In the 
semi-dilute limit where X >> 1 equation (6.3) becomes 

I I I 

- 

I I 1 

so that Rk depends on N and c as 

R$ = N(cN)-‘/*. (6.7) 

This is consistent with the scaling argument (de Gennes 1979) 

(6.8) 

We have performed a numerical computation to obtain the full X dependence of RA. 
The result is displayed in figure 1. Note that the factor ~ / 4  in (6.3) has been replaced 
by 2(1-2u)/(dv- 1) with d = 3 and v =0.588 (Le Guillou and Zinn-Justin 1980) so 
that the higher-order corrections of E are partially taken into account. 

R& -.- ~ ( ~ ~ ) ( 1 - 2 ” ) / ( d v - l )  

We have also evaluated [ R 2 ] .  The ratio R i / [ R 2 ]  is found to be almost independent 
of the concentration in the entire range of X. Daoud et a1 (1975) have studied this 
ratio theoretically and found a strong c dependence when c is close to the overlapping 
concentration c*. However, this is probably due to the rough approximation used there. 

We have restricted ourselves to the monodisperse limit. The calculation of RG in 
a polydisperse system has been carried out recently by Oono (private communication). 

Now we discuss the scaling form of 5. One needs to obtain the osmotic compressibil- 
ity an/&. Using (3.17) one gets 

g(x2)2 1 cc U* 
dx x3 

T2 lo ((1+2~u*N’g(x’))~ - -)* (6.9) 

The third term produces $ l n ( N / 2 ~ )  which is absorbed into the second term by replacing 
cu*N2 by CU*N’-‘‘~ . This fact has been used in (6.5). Equation (6.9) is thus written 
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up to O ( E )  as 

s ( x 2 ) 2  - 
ac 
- = l + X e x p  - { 2(2-dv) dv- 1 [ c,+ j y d x x 3  ( (1 +2Xg(x2))’ (x2+2)2 
an 

where 

c1=-4(1+1n2), (6.11) 

(6.12) 

For sufficiently large values of X, (6.10) is shown to be given by 

9 (6.13) an/ac ~ Xl/(d”-1) 

which is in agreement with the scaling arguments (des Cloizeaux 1975). The numerical 
result of (6.10) with d = 3  and v=O.588 is exhibited in figure 2. 

0 01 0 1  1 0  10 
X 

Figure 2. Scaling function of an/dc.  

Using (4.10), (6.3) and (6.10) one may write the correlation length as 

[’=K(X)R&(an/ac)-’, (6.14) 

where 

K ( X )  =exp(6J2/dN-2J1 +O(E’ ) ] .  (6.15) 

(6.14) is our final formula for [ which is exact up to O ( E ) .  J1 and J z  are complicated 
functions of X. In the limit X+O, K ( X )  becomes unity. On the other hand in the 
semi-dilute limit where X >> 1 one can evaluate K ( m )  analytically (see appendix) 

(6.16) K (CO) = exd[( 1 - 2 U)/( dv - 1)]7} -- 0.376, 

where we have put d = 3 and v = 0.588. Thus 5’ behaves for X >> 1 as 

> (6.17) 5 2 =  ( C N ) Z U / ( l - d V )  

where (6.6), (6.8) and (6.13) have been used. The scaling relation (6.17) is consistent 
with that obtained by Daoud et a1 (1975). However, our concern is the full scaling 
form of (6.14). The explicit concentration dependence of K ( X )  and (6.14) was 
evaluated numerically and is shown in figures 3 and 4 respectively. The numerical 
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Y 

Figure 3. Semi-log plot of K ( X ) .  

0.01 0 .I 1 .o 10 

Figure 4. Scaling function of t'/&, (full line). 
The radius of gyration R & / R & ,  is also exhibited 
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result indicates that K(X) approaches the asymptotic value (6.16) only when X = lo4.  
In figure 4 note the strong concentration dependence of 6 compared with RG. Since 
the correlation length in the dilute limit is of order of several hundred A in a typical 
experimental situation it becomes comparable to the microscopic length at about 
X = 30. There universal scaling does not hold and the microscopic degrees of freedom 
which have been eliminated in the present theory must be taken into account. 

7. Discussions 

In the preceding sections we have studied the asymptotic scaling behaviour of semi- 
dilute polymer solutions. When the polymerisation index N is sufficiently large, a 
system in a good solvent should obey the scaling law in the concentration regime where 
the correlation length 6 is well separated from the microscopic distance a ( 6  >> a ) .  
Although the scaling behaviour of the osmotic pressure has been confirmed experi- 
mentally (Noda et a1 1981), the available data of the correlation length seem to be 
insufficient for comparison with theory. For instance, the light scattering measurement 
by Chu and Nose (1980) covers a wide range of concentration as well as of temperature. 
However, they were little concerned with the scaling function. Thus a precise experi- 
ment focused on the scaling form of the correlation length is highly desirable. 

It has been shown that Edwards' transformation plays an important role in construct- 
ing the renormalisaton group theory of semi-dilute polymer solutions. In fact the 
theory enables us to study the scaling behaviour systematically beyond the phenomeno- 
logical argument for the semi-dilute limit and the low density expansion. Besides these 
features the present theory provides us with a new field-theoretic model (2.10) which 
is renormalisable in four dimensions. This model is quite different in its structure from 
the so-called 44 model. First of all the interaction is not of short range. The 4 1 ~  term 
of (3.1) is approximately given by 

r 

(7.1) 
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whereas the usual 44 model contains 

Thus the wavenumber dependence of the vertex functions is relevant in the present 
case. Secondly although (3.1) is truncated up to fourth order of 4 this does not imply 
that the higher-order terms are irrelevant as is the case in the 44 model of the ordinary 
second-order phase transition. In the calculation of a higher-order scaling function 
one needs to retain the terms neglected in (3.1). 

Although our treatment is exact up to first order of E ,  the calculation of the scaling 
functions is very involved, mainly because of the complicated wavenumber dependence 
of the vertex functions. Simplification of those but keeping the essence would be useful 
to discuss the scaling form of other quantities such as the scattering function itself. 
Further study in this direction and also of dynamics will be published in future. 
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Appendix 

Here we describe the formulae of the vertex functions. From the definition of fl") 
given by (2.16) one obtains 

P3'(q ,  p )  =AN3 jol dT1 l,,' d72 lo d73 exp[-Q21r,- r3/ 
1 

-P* Q(-(71-  7 2 ) + ) 7 1 -  73)+)73-  721) - P2J72- 7311. (AI) 

where P and Q have been introduced in (4.3). Expansion in terms of Q yields up to 
O( Q2) 

where 

2 1  
Y,(P)=-- + - - - + - - (L+1+$)exp(-P2), (A5) 3P2 P P6 Pa P p6 P 

1 4 4  Y3(P) = - - - + - + 
P6 Pa P1° 
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The fourth-order vertex function f14’ is given by 
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which is not symmetrissd about the interchange of the arguments. This point is, 
however, harmless since r‘4’(4, p) given by (3.6) is symmetric with the proper prefactor. 
By using (3.6) a tedious but straightforward calculation leads to 

(-48) f‘4’(4, p) - PZ’( q)f‘2’( p) = dN4 V( P ) (  2P * Q)’, 

where 

(A9) 
3 0 6 3 1  30 24 6 

This formula was used to evaluate the radius of gyration (4.5). The relations (3.15) 
and (3.16) are verified by (A2) and (A8) respectively. 

In order to obtain J(4)  given by (3.12) up to O( Q2) we make use of the expansion 

(1 + 2cuf‘2’(q + p ) ) - ’  

= w,(P)+ w , ( P ) ( ~ P . Q ) +  w l ( P ) a z +  w , ( P ) ( ~ P . Q ) ~ + o ( Q ~ )  ( ~ 1 0 )  

W,(P)  =(1+2cur*‘Z’(p))-’ ,  ( A l l )  

where 

W l ( P )  =2cuN2 W0(P)’ - - - + - + - exp(-P2) , [; ;6 (; ] 
W , ( P )  = Wo(P)-’  W1(P)2  

- ~ C U N ~ W O ( P ) ~  [; -g - 7 p’ + (2> - + - ;6 + - exp(-P2) ] . (A131 

Using (Al)  and (AlO), J(q) is found to be given by (4.8) with 

J1 = $ u N ~ ( ~ / N ) ~ / ~ c u N ~  

dNuN2 2 
2 2  N 

J - - - - (-) d/2cuN2 j p  { W o ( P )  W l ( P )  Y0(P)’ 2 -  

The integrand of (A14) behaves as 4/p4 for large values of P while that of (A15) is 
like -8/3p4. Therefore these lograrithmic divergences do not appear in the combina- 
tion of 6J2/ Nd - 2 J,. 
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When X is large enough one may approximate the integrands of (A14) and (A15) 
by the expressions of large values of P so that the integrals are evaluated analytically. 
The universal amplitude ratio K(m) given by (6.16) was obtained in this way. 
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